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We study the contribution of advection by thermal velocity fluctuations to the effective diffusion
coefficient in a mixture of two indistinguishable fluids. We find good agreement between a simple
fluctuating hydrodynamics theory and particle and finite-volume simulations. The enhancement of
the diffusive transport depends on the system size L and grows as ln(L/L0) in quasi two-dimensional
systems, while in three dimensions it scales as L−1

0 −L−1, where L0 is a reference length. Our results
demonstrate that fluctuations play an important role in the hydrodynamics of small-scale systems.

Thermal fluctuations in non-equilibrium systems in
which a constant (temperature, concentration, velocity)
gradient is imposed externally exhibit remarkable be-
havior compared to equilibrium systems [1]. The so-
lution of the linearized equations of fluctuating hydro-
dynamics shows that concentration and density fluctu-
ations exhibit long-ranged correlations in the presence
of a macroscopic concentration gradient ∇c [1–3]. The
enhancement of large-scale (small wavenumber) concen-
tration fluctuations is dramatic during the early stages of
diffusive mixing between initially phase-separated fluids.
These giant fluctuations [4–6] during free diffusive mix-
ing have been measured using light scattering and shad-
owgraphy techniques [4, 5, 7], finding good but imperfect
agreement with theoretical predictions.

The giant fluctuation phenomenon arises because of
the appearance of long-ranged correlations between con-
centration and velocity fluctuations in the presence of a
concentration gradient. It has been predicted that these
correlations give rise to fluctuation-renormalized trans-
port coefficients [3, 8? ]; however, the predicted en-
hancement of transport at hydrodynamic scales has not
yet been computationally observed. In particular, it is
important to understand how the effective transport co-
efficients depend on the length scale of observation.

In this Letter we consider diffusion in a mixture of
identical but labeled (as components 1 and 2) fluids
[9] enclosed in a box of size Lx × Ly × Lz, in the ab-
sence of gravity. Periodic boundary conditions are ap-
plied in the x (horizontal) and z (depth) directions,
while the top and bottom boundaries are impermeable
constant-temperature walls. A concentration gradient
∇c̄ = (cT−cB)/Ly is imposed along the y axes by enforc-
ing a constant concentration cT at the top wall and cB
at the bottom wall. Because the fluids are indistinguish-
able, concentration is passively transported by thermal
fluctuations.

Since species are not changed in particle collisions, the
diffusive transport of concentration c = ρ1/ρ can only
occur via advective motion of the particles, where ρ de-
notes the mass density. The mass flux for a given species
is therefore equal to the momentum density for particles

of that species. At steady state the particles of a given
species have a non-zero macroscopic momentum density
j̄1 = ρ̄1v̄1 = −ρ̄χ (∇c̄), where χ is the mass diffusion
coefficient [10]. The local fluctuations around the macro-
scopic mean, ρ1 = ρ̄1 + δρ1 and v1 = v̄1 + δv1, can also
make a non-trivial contribution to the average mass flux
if they are correlated,

〈j1〉 = 〈ρ1v1〉 = −ρ̄χ (∇c̄) + 〈(δρ1) (δv1)〉. (1)

At mesoscopic scales the hydrodynamic behavior of flu-
ids can be described with the Landau-Lifshitz Navier-
Stokes (LLNS) equations of fluctuating hydrodynamics
[1, 11]. The incompressible isothermal LLNS equations
for a mixture of two indistinguishable fluids are

∂tv= −∇π − v ·∇v + ν∇2v + ∇·(AvW), (2)

∂tc=−v ·∇c+ χ∇2c+ ∇·(Ac W̃) (3)

where η is the viscosity and ν = η/ρ, and the pressure π
enforces ∇·v = 0. The stochastic fluxes are white-noise
random Gaussian tensor W and vector W̃ fields, with
amplitudes A2

v = 2ηkBT/ρ
2 and A2

c = 2mχc(1 − c)/ρ
determined from the fluctuation-dissipation principle,
where m is the fluid particle mass.

In addition to the usual Fickian contribution, the dif-
fusive flux in (3) includes advection by the fluctuating
velocities v = δv,

−v ·∇ (δc) + χ∇2 (δc) = ∇ · [− (δc) (δv) + χ∇ (δc)] ,

which is a quadratic function of the fluctuations. To lead-
ing order, the advective contribution to the average dif-
fusive mass flux is approximated using the solution of the
linearized equations,

−〈(δc) (δv)〉 ≈ −〈(δc) (δv)〉linear = (∆χ)∇c̄.

The effective diffusion coefficient χeff = χ+ ∆χ thus in-
cludes an enhancement ∆χ due to thermal velocity fluc-
tuations, in addition to the bare diffusion coefficient χ.

The solution to the linearized form of (2,3) in the
Fourier domain [3, 12] shows that the concentration fluc-
tuations and the fluctuations of velocity parallel to the
gradient develop long ranged correlations,

Sc,v‖ = 〈(δ̂c)(δ̂v
?

‖)〉 = − kBT

ρ(ν + χ)k2

(
sin2 θ

)
∇c̄. (4)

where θ is the angle between k and ∇c̄, sin2 θ = k2
⊥/k

2,
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a hat denotes the Fourier transform, and star denotes
the complex conjugate. The power-law divergence for
small k indicates long ranged correlations between δc and
δv‖, and is the cause of both the giant fluctuation phe-
nomenon and the diffusion enhancement. As seen from
(1), the actual correlation that determines the diffusion

enhancement is S
ρ1,v

(1)

‖
= 〈(δ̂c)(δ̂v

(1)

‖ )?〉 ≈ ρ̄Sc,v‖ .

We verify the predictions of fluctuating hydrodynam-
ics by using the Direct Simulation Monte Carlo (DSMC)
particle algorithm [13]. Previous careful measurements
of transport coefficients in DSMC have been limited to
quasi one-dimensional simulations [14]. The effect we are
exploring here does not appear in one dimension as it
arises because of the presence of vortical modes in the
fluctuating velocities. We have performed DSMC calcu-
lations for an ideal hard-sphere gas with molecular di-
ameter σ = 1 and molecular mass m = 1, at an equi-
librium density of ρ0 = 0.06, with the temperature kept
at kBT0 = T0 = 1 via thermal collisions with the top
and bottom walls. Each DSMC particle represents a sin-
gle hard sphere so the mean free path is λ = 3.75 and
the mean free collision time is τ = 2.35. The DSMC time
step was chosen to be ∆t = τ/2, and the collision cell size
is either ∆xc = λ or ∆xc = 2λ. A uniform concentration
gradient along the vertical (y) direction is implemented
by randomly selecting the species of particles to be one
with probability cT/B if they collide with the top/bottom
wall. Hydrodynamic quantities such as velocity and con-
centration are calculated from the particle data by using
a grid of Nx ×Ny ×Nz sampling or hydrodynamic cells,
each of volume ∆V = ∆x∆y∆z, and a discrete Fourier
transform is used to obtain static structure factors.

To compare the prediction (4) to results from parti-
cle simulations, we have converted the continuum static
structure factor Sc,v‖(k) into a discrete structure fac-
tor Sc,v‖(κ) for finite-volume averages of the continuum

fields, where the wavenumbers κ ∈ Z3 index the discrete
set of wavevectors compatible with periodicity [12]. In
Fig. 1 we compare the theoretical prediction for ρ̄Sc,v‖(κ)
to DSMC results for the discrete structure factor S

ρ1,v
(1)

‖
.

Similar results are obtained for two different sizes of the
DSMC collision cells [12], ∆xc = 2λ and ∆xc = λ, verify-
ing that the details of the microscopic collision dynamics
do not affect the mesoscopic hydrodynamic behavior.

It is expected that compressibility effects would affect
S
ρ1,v

(1)

‖
. In order to construct a theoretical prediction,

however, one must not only include the effect of com-
pressibility but also replace the “one-fluid” approxima-
tion with a corresponding “two-fluid” compressible hy-
drodynamic theory [10]. As Fig. 1 demonstrates, the
incompressible isothermal theory for ρ̄Sc,v‖ can be used
as a proxy for S

ρ1,v
(1)

‖
in order to construct theoretical

predictions for the diffusion enhancement.

The mass flux due to advection by the fluctuating ve-
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Figure 1: (Color online) Discrete structure factor S
ρ1,v

(1)
‖

from

quasi two-dimensional DSMC runs with Lx = 64λ, Ly = 512λ
and Lz = 2λ, for several wavenumbers kx = κx · 2π/Lx (see
legend), compared to the discrete equivalent of the continuum
prediction (4) (solid lines of the same color). Note that for a
fixed kx we expect the structure factor to decay as k−4

y .

locities can be approximated using (4) as

〈(δc) (δv)〉linear = (2π)
−3
∫
k

Sc,v (k) dk, (5)

giving an estimate of the diffusion enhancement [3, 12]

∆χ =
kBT

(2π)3ρ (χ+ ν)

∫
k

(
sin2 θ

)
k−2 dk. (6)

Because of the k−2-like behavior, the integral over all
k above diverges unless one imposes [3] a lower bound,
kmin ∼ 2π/L in the absence of gravity, and a phenomeno-
logical cutoff kmax ∼ π/Lmol for the upper bound, where
Lmol is an ad-hoc “molecular” length scale.

For a quasi two-dimensional system, Lz � Lx � Ly,
we can replace the integral over kz with 2π/Lz and inte-
grate over all ky. This leads to an average total diffusive
flux that grows logarithmically with the width Lx for a
fixed height Ly [12],

χ
(2D)
eff ≈ χ+

kBT

4πρ(χ+ ν)Lz
ln
Lx
L0
, (7)

where L0 > 2Lmol is the reference width at which
the “bare” diffusion coefficient is measured. Within
the phenomenological perturbative theory L0 is an ar-
bitrary (mesoscopic) length scale, and simply defines
χ = χeff(Lx = L0). For comparison between the particle
simulations and the theory we use L0 = 16λ. When the
system width becomes comparable to the height, bound-
aries will intervene and for Lx � Ly the effective dif-
fusion coefficient must become a constant, which is pre-
dicted to be a logarithmically-growing function of Ly in
two dimensions. The same coefficient in front of lnLx as
in (7) is obtained when the integral over kx is replaced
by a discrete sum over the wavenumbers consistent with
periodicity, kx = κx · 2π/Lx, κx ∈ Z [12].

In three dimensions, Lx = Lz = L � Ly, χeff con-
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verges as L→∞ to the macroscopic diffusion coefficient,

χ
(3D)
eff ≈ χ+

αkBT

ρ(χ+ ν)

(
1

L0
− 1

L

)
, (8)

but for a finite system the effective diffusion coefficient
is reduced by an amount ∼ L−1 due to the truncation
of the velocity fluctuations by the confining walls. Cal-
culating the exact value of α requires performing a sum
over κx and κz instead of integrals over kx and kz, as we
have done numerically [12]. The numerical results sug-

gest that, as in two dimensions, the difference in χ
(3D)
eff

between two systems attains a finite value as Lmol → 0,
justifying (8) for (L0, L)� Lmol.

In particle simulations, we calculate the effective dif-
fusion coefficient χeff from the momentum density of one
of the species (denoted either with a subscript or with a
parenthesis superscript) along the vertical direction,

〈j(1)
‖ 〉 = 〈ρ1v

(1)
‖ 〉 = ρ0χeff

c̄T − c̄B
Ly −∆y

≈ ρ0χeff (∇c̄) , (9)

where we measure c̄T and c̄B in the top and bottom layer
of sampling cells (whose centers are a distance Ly −∆y
from each other) to empirically account for the small con-
centration slip in DSMC. Numerical experiments have

verified that 〈j(1)
‖ 〉 matches the flux obtained from count-

ing the average number of color flips at the top or bottom

walls. Furthermore, the results verify that 〈j(1)
‖ 〉 is linear

in the gradient ∇c̄, and that c̄T/B are essentially inde-
pendent of the system dimensions.

The traditional definition of a “renormalized” diffusion
coefficient [8? ] as the macroscopic limit of χeff, only
works in three dimensions and is not very useful for con-
fined systems. Instead, for each sampling cell, we define
a locally renormalized diffusion coefficient χ0 via

〈ρ1〉〈v(1)
‖ 〉 = 〈ρ1〉〈j(1)

‖ /ρ1〉 = ρ̄χ0 (∇c̄) , (10)

where we have accounted for the fact that the macro-
scopic concentration profile c̄(y) may depend on y. In
fact, such a dependence is observed in the particle simula-
tions, and we have approximated the local concentration
gradient dc̄/dy by a numerical derivative of a polynomial
of degree five fit to c̄(y). We have empirically observed
that χ0 is independent of y, except for a boundary layer
close to the top and bottom walls [12]. This is an im-
portant finding, since (10) is a constitutive model that
is assumed to hold not just at the macroscale but also
at the mesoscale, notably, χ0 is an input parameter for
fluctuating hydrodynamics finite-volume solvers [15].

Figure 2a shows how χeff and χ0 change as the width
of the system Lx is increased while keeping the height Ly
fixed for two different quasi two-dimensional DSMC sys-
tems. For System A, the DSMC collision cells are cubes
of side ∆xc = 7.5 = 2λ, while each sampling cell contains
2 × 2 × 1 collision cells, or Np = 101 particles on aver-
age. The height of the box is Ly = 256λ = 960 and the
imposed concentrations at the walls are cB = 0.25 and
cT = 0.75. For System B, the sampling cells are twice

as large, 4 × 4 × 1 collision cells each, and the system
height is Ly = 512λ = 1920. We obtain similar results
using a factor of two smaller collision cells (not shown).
For the quasi two-dimensional systems, the thickness is
Lz = 7.5 = 2λ and there is only one DSMC collision cell
along the z direction. Figure 2a shows that χeff grows like
lnLx, with a slope that is well-predicted by Eq. (7). For
widths larger than about 8 mean free paths, χ0 becomes
constant and rather similar to the Chapman-Enskog ki-
netic theory prediction. Note that χ0 is not a fundamen-
tal material constant and in fact depends on the shape
of the sampling cells, notably, it grows as the sampling
cell size is enlarged.

In Fig. 2b we show results from three dimensional
DSMC simulations, in which the system width (x) and
depth (z) directions are equivalent, Lz = Lx = L, and
the rest of the parameters are as for System A. Similar
behavior is seen as in two dimensions, except that now
the effective diffusion grows as −L−1 and saturates to a
constant value for large L, assuming that Ly � L.

The predictions of the simplified fluctuating hydrody-
namic theory, Eqs. (7) and (8), are shown in Figs. 2 and
are seen to be in very good agreement with the particle
simulations for intermediate Lx. However, recall that the
incompressible isothermal theory assumed that Ly is es-
sentially infinite and thus in two dimensions χeff grows
unbounded in the macroscopic limit. Yet when Lx � Ly,
χeff must saturate to a constant value, and the parti-
cle data shown in Fig. 2a shows measurable deviations
from the simple theory for Lx & Ly/2. One can extend
the theoretical calculations to account for the hard wall
boundary conditions in the y direction [1], however, such
a calculation is non trivial. Instead, we have used the
finite-volume solver developed in Ref. [15] to solve the
LLNS non-linear system of SPDEs for the same system
dimensions as in the particle simulations. To minimize
the effect of nonlinearities in the SPDE solver, we arti-
ficially reduce the amplitude of the noise by some factor
ε � 1, but then scale all correlations by ε−2 [12]. The
results, shown in Fig. 2, are in excellent agreement with
the particle simulations for the larger system sizes.

In finite-volume solvers, the spacing of the computa-
tional grid plays the equivalent of the cutoff length Lmol,
and therefore χeff depends on the grid spacing. We have
added a constant to the effective diffusion coefficient ob-
tained from SPDE runs so as to match χeff from the par-
ticle simulations for Lx = L0 = 16λ. This correction
essentially renormalizes χ0 based on the size of the finite-
volume hydrodynamic cells. One can think of χ0 as the
physical-space equivalent of the wavenumber-dependent
diffusion coefficient χ (k, ω = 0) commonly used in lin-
ear response theories [8, 9]. Theoretical predictions [12]
for χ0 indicate that χ0 only includes “sub-grid” contribu-
tions, from wavenumbers larger than 2π/∆x. Thus χ0

stops increasing once the system becomes substantially
larger than the size of the sampling cell. The bare diffu-
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Figure 2: (Color online) (Panel a) The effective χeff and
the renormalized χ0 diffusion coefficients as a function of the
width of the system Lx in two dimensions. Numerical results
for System A (DSMC and SPDE) and System B (DSMC) are
shown with symbols (see legend). The error bars for all of
the simulation data are comparable or smaller than the size
of the symbols. The theoretical predictions [12] are evaluated
numerically and shown with lines. (Panel b) Same as panel
(a) but in three dimensions. The inset highlights the L−1

behavior.

sion coefficient χ in the theory and SPDE calculations is
adjusted so that for Lx = L0 = 16λ the effective diffusion
is the same as that measured in the particle simulations.

Previously-studied corrections to the bare or molecu-
lar transport coefficients due to the tail of the velocity
autocorrelation function (VACF) [2], hydrodynamic in-
teractions with periodic images of a given particle [16],
and the contribution due to advection by thermal ve-
locity fluctuations [3, 8] studied here, are all the same
physical phenomenon simply calculated through differ-
ent theoretical approaches, all of which are equivalent
because of linearity [12] . In three dimensions, simple
estimates indicate that the contribution of fluctuations
to the macroscopic diffusion coefficient are small com-
pared to molecular effects for gases but can be signif-
icant for liquids [12]. However, the logarithmic diver-
gence in (7) means that ∆χ � χ for sufficiently large
(quasi) two-dimensional systems, requiring the inclusion
of higher order corrections in the theory. At present,

reaching the system width Lx where ∆χ ∼ χ is diffi-
cult with DSMC simulations, but it may be accessible to
finite-volume SPDE solvers or experiments [6].

Our results conclusively demonstrate that the advec-
tion by thermal velocity fluctuations affects the mean
transport in nonequilibrium finite systems. Theoretical
modeling of finite systems at the nano or microscale thus
requires including nonlinear hydrodynamic fluctuations.
The advantage of fluctuating hydrodynamics is that it is
simple, and it can take into account the proper boundary
conditions and exact geometry, especially if a numerical
SPDE solver is used. Furthermore, other effects such
as gravity, temperature variations, or time dependence,
can easily be included. However, a proper fully-nonlinear
theory has yet to be developed, and requires detailed un-
derstanding of the role of the necessary large wavenumber
cutoffs (regularizations). Future work should verify the
predictions of fluctuating hydrodynamics for the effect
of fluctuations on diffusive transport in spatially non-
uniform systems.
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